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Abstract. The critical behaviour of fully directed Levy flight on a square lattice is studied 
using the Monte Carlo method. The obtained critical exponents U, ull and U _  are indepen- 
dent of the parameter U. This seems to be interesting compared with the Levy flight 
previously discussed by Halley and Nakanishi, for which U depends on U in addition to 
d. It also indicates that the introduction of the direction plays a dominant role in directed 
Levy flight just as in directed SAW, with U, ull and U _  independent of d. 

Critical phenomena in systems with power-dependent long-range forces have been 
studied since the early days of renormalisation group theory [ 1,2]. By the E expansions, 
for fixed d these authors obtained 

~ = ( 2 / d ) [ ( 1 - ~ / 2 d + ( ~ ’ / d ~ ) ( 3 0 4 - 5 d ’ ) / 2 5 6 + .  . .] (1) 

which corresponds to the following expansion for 0 < U < 2 

u ) [ l + ~ / 4 d  + ( ~ ~ / 6 4 ~ ~ ) ( 1 9 - , ~ ’ + .  . .)] d < 2 u  
v = [ y u  d > 2u. 

Only recently, however, have the simplest such systems, namely node-avoiding Levy 
flights, been simulated by the Monte Carlo technique in order to verify these predictions 

Levy flight is similar to random walk, except that the steps are not necessarily to 
next neighbours [4]. Instead, the probability for a step to have a step length r is 
proportional to 1 /  r’+’ with 0 < U < 2 ,  for r + m. The properties of such a random walk 
are strikingly different from those of ordinary random walks. When 0 < U < 1, the 
mean and the mean-square displacement per step cannot be well defined since 
{ rP(  r )  d’r and { r’P( r) d”r  are not absolutely convergent. In the limit of a large number 
of steps the HausdorfT-Besicovitch dimension of the ‘trail’ consisting of the endpoints 
of the steps is U. In analogy to the relation between self-avoiding random walks and 
spin systems found by de Gennes [ 5 ] ,  the critical behaviour of node-avoiding Levy 
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flight is described by the n-vector model with n = 0. This model can be written as 
x 

H = J i jS i  * S, 
iJ 

(3)  
n-0. 

a = l  

Here H is the Hamiltonian, J,, is zero unless i and j lie along one of the d orthogonal 
directions in the two-dimensional lattice and is ( J / f i ) r - ( ' * ' ' ) ,  where r is the distance 
between sites i and j and f i  is the reciprocal of the temperature. Similar to the derivation 
of the equivalence of the nearest-neighbour n-vector model to a self-avoiding walk in 
the limit n -f 0, one has for a node-avoiding Levy flight that 

N 

where 

with Plm = r;:", vN(rij,  {r,, , ,}) is the number of node-avoiding Levy flights between ri 
and rj with N steps of lengths given by { r r m } .  

In this paper, we study an extension of node-avoiding Levy flight to include a 
preferred direction in the path of the walk, which we call 'directed Levy flight'. The 
meaning of this direction constraint is illustrated in figure 1 where a disallowed step 
on a square lattice is shown. In recent years systems with power-dependent short-range 
forces and directionally dependent critical phenomena have been the focus of much 
attention. These systems are directed percolation [ 6 ] ,  directed lattice animals [7] and 
directed self-avoiding walks [8]. The introduction of preferred direction in such systems 
gives rise to two independent correlation lengths RI, and R,, parallel and perpendicular 
to the preferred direction respectively. In the case of directed SAW the corresponding 
exponents vll and vl have been obtained exactly with the values vIl = 1.0 and vl = 0.5 
for all dimensions d 2 2 [9]. These results indicate that the directed self-avoiding 
random walk consists of a one-dimensional directed self-avoiding random walk and 
an ordinary random walk. What behaviour will the directed Levy flight show? 

(a )  ( b )  
Figure I.  Illustration of the constraint which defines a fully directed Levy flight, including 
paths of the type illustrated in ( a )  but not those shown in ( b ) .  
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In order to test the effect of direction on directed Levy flight we have performed 
a Monte Carlo simulation in two dimensions. The probabilities of making steps with 
the step length r were chosen as [ r - ’ - ( r + l ) - ” ] .  This is because the probability for 
a step to have a length greater than some r is assumed to decrease as r. The maximum 
step length was chosen as six. The total number of directed Levy flights for N = 20, 
40, 60, 80, 100 are 20N2 for each value of U. 

We calculated the correlation lewths - RZ, R i S d  R: (see figure 2) for N steps on 
a Honeywell machine. Expressing R f ,  R: and R 2  for N + a  as in [ l o ]  

- - - 
(6) Ri  - N2”ii R: - N2”-  R 2  - N 2 ”  

we find for a directed Levy flight in two dimensions (see figure 3) that 

U = 0.5 

U = 1.2 

U = 1.4 

U = 1.6 

U =2.5 

v = 0.975 * 0.002 

v = 0.975 * 0.003 

v = 0.976 * 0.004 

v = 0.975 * 0.002 

v = 0.980 * 0.003 

v l  = 0.504 * 0.002 

U, = 0.502 * 0.002 

v L  = 0.502 * 0.001 

U, = 0.502 * 0.002 

v, = 0.500 * 0.001 

vil = 0.992 * 0.003 

= 0.993 * 0.002 

= 0.992 * 0.002 

 VI^ = 0.991 * 0.003 

vi1 = 0.994 * 0.002 

compared with v = 0.97, U, = 0.50 and vll = 1.00 for directed SAW [ 1 I ]  obtained with 
the same finite step number N as for the directed Levy flight above. For N + CO, we 
believe that both cases will approach the results v = vll = 1.0 and vL = 0.5 [ 121. 

These results indicate explicitly that directed Levy flight belongs to the same 
universality class as directed SAW and that the critical exponents v, vll and U, are 
independent of the parameter U. Such a result seems to be interesting compared with 
the Levy flight discussed by Halley and Nakanishi for which v depends on both U and 
d. We know [ l l ,  121 that fully directed SAW and partially directed SAW belong to the 
same universality class and that two-dimensional directed SAW belongs to the same 
universality class as three-dimensional directed SAW, which means that the introduction 
of the ‘direction’ plays a dominant role in the directed SAW. Our results indicate that 
the ‘direction’ still plays the dominant role in the two-dimensional directed Levy flight. 
Whether or not the three-dimensional directed Levy flight has the same behaviour will 
be reported in another paper. 

Figure 2. The correlation lengths R, R,, and RL for a fully directed Levy flight. 
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Figure 3. Plots of ( a  j log ?, ( b )  log 3 and ( c )  log against log N for, from top to 
bottom, U = 0.5, 1.2, 1.4, 1.6 and 2.5. The slopes of the straight-line fits give the exponents 
for a fully directed Levy flight in two dimensions. 
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