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Abstract. The critical behaviour of fully directed Levy flight on a square lattice is studied
using the Monte Carlo method. The obtained critical exponents », v, and v, are indepen-
dent of the parameter u. This seems to be interesting compared with the Levy flight
previously discussed by Halley and Nakanishi, for which v depends on u in addition to
d. It also indicates that the introduction of the direction plays a dominant role in directed
Levy flight just as in directed SAw, with », v| and v_ independent of 4.

Critical phenomena in systems with power-dependent long-range forces have been
studied since the early days of renormalisation group theory [1, 2]. By the £ expansions,
for fixed d these authors obtained

v=(2/d)[(1-¢/2d +(e°/d*)(304—5d7)/256+...] (1

which corresponds to the following expansion for 0 <u <2

{(1/u)[1+e/4d+(52/64u3)(1 —uc+..)] d<2u
y= (2)

1/u d>2u.

Only recently, however, have the simplest such systems, namely node-avoiding Levy
flights, been simulated by the Monte Carlo technique in order to verify these predictions
{31

Levy flight is similar to random walk, except that the steps are not necessarily to
next neighbours [4]. Instead, the probability for a step to have a step length r is
proportional to 1/r' ™" with 0 <u <2, for r» . The properties of such a random walk
are strikingly different from those of ordinary random walks. When 0<u <1, the
mean and the mean-square displacement per step cannot be well defined since
[ rP(r) d°rand | r*P(r) d°r are not absolutely convergent. In the limitof a large number
of steps the Hausdorff-Besicovitch dimension of the ‘trail’ consisting of the endpoints
of the steps is u. In analogy to the relation between self-avoiding random walks and
spin systems found by de Gennes [5], the critical behaviour of node-avoiding Levy
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flight is described by the n-vector model with n =0. This model can be written as

H=ZJUS,"SJ

Y (3)
n=73 (S5 n-0.

a=1

Here H is the Hamiltonian, J; is zero unless i and j lie along one of the d orthogonal
directions in the two-dimensional lattice and is (J/8)r ""*, where r is the distance
between sites i and j and 8 is the reciprocal of the temperature. Similar to the derivation
of the equivalence of the nearest-neighbour n-vector model to a self-avoiding walk in
the limit n - 0, one has for a node-avoiding Levy flight that

(S?S}’>=§ (J/B) M in(ry) (4)
where
ﬁN={Z)HlenN(rij{r1m}) (%)

with Plm =r.*, nxn(ry, {rm}) is the number of node-avoiding Levy flights between r;
and r; with N steps of lengths given by {r,,}.

In this paper, we study an extension of node-avoiding Levy flight to include a
preferred direction in the path of the walk, which we call ‘directed Levy flight’. The
meaning of this direction constraint is illustrated in figure 1 where a disallowed step
on a square lattice is shown. In recent years systems with power-dependent short-range
forces and directionally dependent critical phenomena have been the focus of much
attention. These systems are directed percolation [6], directed lattice animals [7] and
directed self-avoiding walks {8]. The introduction of preferred direction in such systems
gives rise to two independent correlation lengths R, and R , parallel and perpendicular
to the preferred direction respectively. In the case of directed saw the corresponding
exponents vy and v, have been obtained exactly with the values vy=1.0 and v, =0.5
for all dimensions d =2 [9]. These results indicate that the directed self-avoiding
random walk consists of a one-dimensional directed self-avoiding random walk and
an ordinary random walk. What behaviour will the directed Levy flight show?
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Figure 1. Hlustration of the constraint which defines a fully directed Levy flight, including
paths of the type illustrated in (@) but not those shown in (b).
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In order to test the effect of direction on directed Levy flight we have performed
a Monte Carlo simulation in two dimensions. The probabilities of making steps with
the step length r were chosen as [~ —(r+1)""]. This is because the probability for
a step to have a length greater than some r is assumed to decrease as r. The maximum
step length was chosen as six. The total number of directed Levy flights for N =20,
40, 60, 80, 100 are 20N’ for each value of u.

We calculated the correlation lengths R®, Rf and R (see figure 2) for N steps on
a Honeywell machine. Expressing Rﬁ, R? and R’ for N> as in [10]

I_z_‘z"“_NZuu R_i"’ NZu_ RZ“" N2v (6)

we find for a directed Levy flight in two dimensions (see figure 3) that

u=05 v =0.975+0.002 v, =0.504£0.002 v =0.992+0.003
u=1.2 v =0.975=0.003 v, =0.502+£0.002 v =0.993+0.002
u=14 v =0.976 £0.004 v, =0.502+0.001 v, =0.992+0.002
u=1.6 v =0.975%0.002 v, =0.502+0.002 v =0.991+0.003
u=25 v =0.980=0.003 v, =0.500+£0.001 vy =0.994+0.002

compared with v=0.97, v, =0.50 and »;=1.00 for directed saw [11] obtained with
the same finite step number N as for the directed Levy flight above. For N >, we
believe that both cases will approach the results v =»,=1.0 and v, =0.5 [12].

These results indicate explicitly that directed Levy flight belongs to the same
universality class as directed saw and that the critical exponents », v and », are
independent of the parameter u. Such a result seems to be interesting compared with
the Levy flight discussed by Halley and Nakanishi for which v depends on both u and
d. We know [11, 12] that fully directed saw and partially directed saw belong to the
same universality class and that two-dimensional directed saw belongs to the same
universality class as three-dimensional directed saw, which means that the introduction
of the ‘direction’ plays a dominant role in the directed saw. Our results indicate that
the ‘direction’ still plays the dominant role in the two-dimensional directed Levy flight.
Whether or not the three-dimensional directed Levy flight has the same behaviour will
be reported in another paper.

Figure 2. The correlation lengths R, R and R, for a fully directed Levy flight.
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Figure 3. Plots of (a) log —R—2 (b) logﬁ-zl and (c¢) 103—1—2—{ against tog N for, from top to
bottom, u=0.5, 1.2, 1.4, 1.6 and 2.5. The slopes of the straight-line fits give the exponents
for a fully directed Levy flight in two dimensions.
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